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Abstract—In this work we gather a large data set of 13 different
textures that represent various materials a robot could come into
contact with. We use a resilient clear gel within a TacTip [1]
sensor to investigate whether lower resolutions can still achieve
high accuracy classifying different textures. We found we could
go as low as 20% of the original image size and still get above
97% accuracy on the test data.

I. INTRODUCTION

In most environments, terrestrial locomotion takes place
on varied substrates. For a locomoting animal or robot to
adapt its gait to changes in substrate, it needs to quickly
and reliably identify substrate surface properties [2} 3]]. Tactile
sensory modalities play a large role in the acquisition of this
essential environmental feedback. In robotics, optical tactile
sensory systems have been shown to be highly effective in
this task [[1]], but they are computationally expensive, and their
tactile interfaces can be fragile. In this paper, we show that
it is possible to achieve highly accurate surface classification
while making significant gains in computational efficiency by
reducing the resolution of the video feed, and furthermore that
these gains can be achieved with a more durable interface than
has been used previously.

II. METHODS

The Sensor: We constructed a TacTip (see Fig. with
133 optical markers and with two material types for the
TacTip flesh: RTV27905 silicone (the previous standard) and
SORTA-CLEAR silicone (SCS) which has a tensile strength
of 473 psi. The SCS is less widely used for optical tactile
sensing, despite it being cheaper. RTV27905 silicone has lower
stiffness than SCS, and therefore is potentially more sensitive.
However, it is also more prone to breakage under pressure.
As we intend this part of the sensor to be in contact with the
ground and supporting a robot’s weight during locomotion, we
prefer the higher toughness of SCS so wanted to test if the
reduced sensitivity compared to RTV27905 had an affect on
classification accuracy.

Rig Testing Setup: Our test rig is a TacTip mounted on
a 3DOF cartesian robot (figure [I). The TacTip is pressed
downwards onto a textured surface. The sensor tip is then
dragged across the surface, in varied directions so as to avoid
biasing the data-set. The rig was controlled by a RP2040 chip
running MicroPython.

Texture Dataset: The texture dataset was gathered by drag-
ging a TacTip across a range of materials at different pressures
using the rig in Fig. [I] and recording the images of the de-
formed pins from the initial point of touch, for approximately

Fig. 1: Test Rig (left panel). The plate (seen as the blue PCB
with 15 pads on) has a pressure surface attached held by four
spacers the. The material is screwed down on top of the plate.
The TacTip (right panel) is attached to the movable arm of the
rig.and is angled taright downwards.

10 seconds. Pressures was determined by how far a sensor
is lowered onto the touching point of plate itself. Further
pressure was applied by lowering 3mm, then 6mm. The more
pressure, the more physical resistance against the sensor there
was. We used a range of pressures which equates to a range of
forces on the sensor because we want the sensor to be robust
across a range of robot weights and forces. Because there are
no standard textural datasets, we picked a range of textures
that might reasonably cover a floor, ranging from carpets, soft
materials, different fabrics and hard materials.

The dataset was converted to the dimensions (IN,t,w,h)
where N is the size of the dataset, ¢ is the number of
frames per trial and w and h are the width and height of the
image respectively. We converted the images to grey-scale and
applied a Sobel filter to make the optical markers stand out [4].
The initial image size is 110 x 120 pixels, over ¢ = 20 frames.
The dataset was further augmented by rotating the images 90,
180, and 270 degrees so as to not bias the sensor detection to
specific directions of travel.

Model: We employed a convolutional neural network (CNN)
for pattern recognition. Our arbitrarily chosen architecture was
made up of two convolutional layers, a max pooling layer
and two linear layers before the output layer. The dataset was
concatenated into a line of 7" images before applying min-
max scaling over the dataset. Each convolutional layer used a
kernel of 3 x 3. The max pooling kernel was 2 x 2 leading
into a linear layer where the size was calculated using equation
L=64xhxT x0.25 x w x 0.25. The output layer was the
number of classes, and calculating the resultant class used the
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Fig. 2: Our texture dataset was developed to try and align
with previous datasets. Our texture dataset was developed
using a range of everyday floor coverings to try and align
with previous datasets which often use common lab materials.
The textures were (a-m): Interlaced mat. Denim Jeans. Cotton.
Wool. Foam with small groves (referred Efoam). Foam with
smooth surface (referred Ffoam). Foam with large groves (re-
ferred Gfoam). Bubble wrap. Felt. Cork. Concentrated rubber.
Short carpet. Long carpet.

maximum value for the class prediction. The full augmented
(added rotated images) dataset was split into 80% training and
20% testing. We used the stochastic gradient descent algorithm
with 100 epochs per model for training and a 0.005 learning
rate. A hyperparameter search was undertaken to evaluate the
importance of temporal size, and start position of the sensor
in order to classify texture. We could use as little as the first
four frames of the trial to achieve an accuracy of around 99%
on the testing dataset.

III. RESULTS AND DISCUSSION

To assess the importance of the resolution of the optical
sensor, We experimented by downsampling the images from
the database with a range of scaling values of: 5, 10, 15, 20,
25, 30, 35, 40, 45, 50, 65, 60, 70, 80, 90 and 100 %. All
resizing used the area interpolation method. At 5% the image
is pixelated and to a human incomprehensible. 10% is still
pixelated but some detail of movement can be seen. The CNN
model was trained on each data set, and the accuracy gathered,
for each resolution. This experiment was repeated five times
to gather an average and maximum performing network. The
trends shown in figure [3] make it clear that low resolutions
lead to a poorer performance and that anything below 20% is
impeded in accuracy. However, resolutions above 20% can
perform well. The differences in results between the two
types of silicone are negligible, meaning that we can increase
durability with no real cost in terms of accuracy. The minimal
image size should cover a frame of 24 x 88 pixels (88 being

Accuracy vs resolution

100 4

A P

A

eemooces = g coc o

90 4

—— Average train (SCS)
—— Average test (SCS)
Max train (SCS)
Max test (SCS)
—— Average train (gel)

Average test (gel)
---- Max train (gel)

Max test (gel)

80+

704

Accuracy (%)

60 1

50 1

40

0‘.2 014 0.‘6 018 110
Resolution
Fig. 3: Texture classification accuracy for different image
resolutions using four frames. Averages shown in solid line,
best performance shown as dotted. Results are shown for both
types of silicone: SCS and gel; as indicated in the legend.

the concatenated four temporal images of 24 x 22). These
dimensions represent 20% of our original cropped image.

IV. CONCLUSION

We have demonstrated that it is possible to distinguish
between 13 surface textures with an accuracy of over 97%
using a system composed of a TacTip, minimal preprocessing,
and a CNN. Remarkably, we found that we could reduce the
resolution of the TacTip video feed by up to 80% without
compromising performance, thereby dramatically reducing the
computational costs of this system. We also found that we
could achieve this while simultaneously increasing the dura-
bility of the tactile interface, leading to increased physical
reliability.
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